feat: 中文名按照姓+名拼音首字母脱敏

This commit is contained in:
tigermren 2025-08-16 16:37:24 +08:00
parent 8399bc37fc
commit 2c4ecfd6b0
3 changed files with 196 additions and 37 deletions

View File

@ -8,6 +8,7 @@ from ..utils.json_extractor import LLMJsonExtractor
from ..utils.llm_validator import LLMResponseValidator
import re
from .regs.entity_regex import extract_id_number_entities, extract_social_credit_code_entities
from pypinyin import pinyin, Style
logger = logging.getLogger(__name__)
@ -19,6 +20,41 @@ class NerProcessor:
def _validate_mapping_format(self, mapping: Dict[str, Any]) -> bool:
return LLMResponseValidator.validate_entity_extraction(mapping)
def _mask_chinese_name(self, name: str, surname_counter: Dict[str, Dict[str, int]]) -> str:
"""
处理中文姓名脱敏
保留姓名变为大写首字母
同姓名同首字母者按12依次编号
"""
if not name or len(name) < 2:
return name
surname = name[0]
given_name = name[1:]
# 获取名的拼音首字母
try:
pinyin_list = pinyin(given_name, style=Style.NORMAL)
initials = ''.join([p[0][0].upper() for p in pinyin_list if p and p[0]])
except Exception as e:
logger.warning(f"Failed to get pinyin for {given_name}: {e}")
# 如果拼音转换失败,使用原字符
initials = given_name
# 初始化姓氏计数器
if surname not in surname_counter:
surname_counter[surname] = {}
# 检查是否有相同姓氏和首字母的组合
if initials in surname_counter[surname]:
surname_counter[surname][initials] += 1
masked_name = f"{surname}{initials}{surname_counter[surname][initials]}"
else:
surname_counter[surname][initials] = 1
masked_name = f"{surname}{initials}"
return masked_name
def _process_entity_type(self, chunk: str, prompt_func, entity_type: str) -> Dict[str, str]:
for attempt in range(self.max_retries):
try:
@ -99,22 +135,23 @@ class NerProcessor:
def _generate_masked_mapping(self, unique_entities: list[Dict[str, str]], linkage: Dict[str, Any]) -> Dict[str, str]:
"""
结合 linkage 信息按实体分组映射同一脱敏名并实现如下规则
1. 人名/简称保留姓名变为某同姓编号
2. 公司名同组公司名映射为大写字母公司A公司B公司...
3. 英文人名每个单词首字母+***
4. 英文公司名替换为所属行业名称英文大写如无行业信息默认 COMPANY
5. 项目名项目名称变为小写英文字母 a项目b项目...
6. 案号只替换案号中的数字部分为***保留前后结构和支持中间有空格
7. 身份证号6位X
8. 社会信用代码8位X
9. 地址保留区级及以上行政区划去除详细位置
10. 其他类型按原有逻辑
1. 中文人名保留姓名变为大写首字母同姓名同首字母者按12依次编号李强->李Q张韶涵->张SH张若宇->张RY白锦程->白JC
2. 律师姓名审判人员姓名同上中文人名规则
3. 公司名同组公司名映射为大写字母公司A公司B公司...
4. 英文人名每个单词首字母+***
5. 英文公司名替换为所属行业名称英文大写如无行业信息默认 COMPANY
6. 项目名项目名称变为小写英文字母 a项目b项目...
7. 案号只替换案号中的数字部分为***保留前后结构和""支持中间有空格
8. 身份证号6位X
9. 社会信用代码8位X
10. 地址保留区级及以上行政区划去除详细位置
11. 其他类型按原有逻辑
"""
import re
entity_mapping = {}
used_masked_names = set()
group_mask_map = {}
surname_counter = {}
surname_counter = {} # 用于中文姓名脱敏的计数器
company_letter = ord('A')
project_letter = ord('a')
# 优先区县级单位,后市、省等
@ -132,18 +169,12 @@ class NerProcessor:
for entity in entities:
group_mask_map[entity['text']] = masked
elif '人名' in group_type:
surname_local_counter = {}
for entity in entities:
name = entity['text']
if not name:
continue
surname = name[0]
surname_local_counter.setdefault(surname, 0)
surname_local_counter[surname] += 1
if surname_local_counter[surname] == 1:
masked = f"{surname}"
else:
masked = f"{surname}{surname_local_counter[surname]}"
# 使用新的中文姓名脱敏方法
masked = self._mask_chinese_name(name, surname_counter)
group_mask_map[name] = masked
elif '英文人名' in group_type:
for entity in entities:
@ -194,13 +225,8 @@ class NerProcessor:
if not name:
masked = ''
else:
surname = name[0]
surname_counter.setdefault(surname, 0)
surname_counter[surname] += 1
if surname_counter[surname] == 1:
masked = f"{surname}"
else:
masked = f"{surname}{surname_counter[surname]}"
# 使用新的中文姓名脱敏方法
masked = self._mask_chinese_name(name, surname_counter)
entity_mapping[text] = masked
used_masked_names.add(masked)
elif '公司' in entity_type or 'Company' in entity_type:

View File

@ -30,3 +30,6 @@ PyPDF2>=3.0.0
pandas>=2.0.0
# magic-pdf[full]
jsonschema>=4.20.0
# Chinese text processing
pypinyin>=0.50.0

View File

@ -4,9 +4,9 @@ from app.core.document_handlers.ner_processor import NerProcessor
def test_generate_masked_mapping():
processor = NerProcessor()
unique_entities = [
{'text': '', 'type': '人名'},
{'text': '', 'type': '人名'},
{'text': '', 'type': '人名'},
{'text': '', 'type': '人名'},
{'text': '', 'type': '人名'}, # Duplicate to test numbering
{'text': '小明', 'type': '人名'},
{'text': 'Acme Manufacturing Inc.', 'type': '英文公司名', 'industry': 'manufacturing'},
{'text': 'Google LLC', 'type': '英文公司名'},
{'text': 'A公司', 'type': '公司名称'},
@ -32,17 +32,16 @@ def test_generate_masked_mapping():
'group_id': 'g2',
'group_type': '人名',
'entities': [
{'text': '', 'type': '人名', 'is_primary': True},
{'text': '', 'type': '人名', 'is_primary': False},
{'text': '', 'type': '人名', 'is_primary': True},
{'text': '', 'type': '人名', 'is_primary': False},
]
}
]
}
mapping = processor._generate_masked_mapping(unique_entities, linkage)
# 人名
assert mapping['李雷'].startswith('李某')
assert mapping['李明'].startswith('李某')
assert mapping['王强'].startswith('王某')
# 人名 - Updated for new Chinese name masking rules
assert mapping['李强'] == '李Q'
assert mapping['王小明'] == '王XM'
# 英文公司名
assert mapping['Acme Manufacturing Inc.'] == 'MANUFACTURING'
assert mapping['Google LLC'] == 'COMPANY'
@ -60,3 +59,134 @@ def test_generate_masked_mapping():
assert mapping['310101198802080000'] == 'XXXXXX'
# 社会信用代码
assert mapping['9133021276453538XT'] == 'XXXXXXXX'
def test_chinese_name_pinyin_masking():
"""Test Chinese name masking with pinyin functionality"""
processor = NerProcessor()
# Test basic Chinese name masking
test_cases = [
("李强", "李Q"),
("张韶涵", "张SH"),
("张若宇", "张RY"),
("白锦程", "白JC"),
("王小明", "王XM"),
("陈志强", "陈ZQ"),
]
surname_counter = {}
for original_name, expected_masked in test_cases:
masked = processor._mask_chinese_name(original_name, surname_counter)
assert masked == expected_masked, f"Expected {expected_masked}, got {masked} for {original_name}"
# Test duplicate handling
duplicate_test_cases = [
("李强", "李Q"),
("李强", "李Q2"), # Should be numbered
("李倩", "李Q3"), # Should be numbered
("张韶涵", "张SH"),
("张韶涵", "张SH2"), # Should be numbered
("张若宇", "张RY"), # Different initials, should not be numbered
]
surname_counter = {} # Reset counter
for original_name, expected_masked in duplicate_test_cases:
masked = processor._mask_chinese_name(original_name, surname_counter)
assert masked == expected_masked, f"Expected {expected_masked}, got {masked} for {original_name}"
# Test edge cases
edge_cases = [
("", ""), # Empty string
("", ""), # Single character
("李强强", "李QQ"), # Multiple characters with same pinyin
]
surname_counter = {} # Reset counter
for original_name, expected_masked in edge_cases:
masked = processor._mask_chinese_name(original_name, surname_counter)
assert masked == expected_masked, f"Expected {expected_masked}, got {masked} for {original_name}"
def test_chinese_name_integration():
"""Test Chinese name masking integrated with the full mapping process"""
processor = NerProcessor()
# Test Chinese names in the full mapping context
unique_entities = [
{'text': '李强', 'type': '人名'},
{'text': '张韶涵', 'type': '人名'},
{'text': '张若宇', 'type': '人名'},
{'text': '白锦程', 'type': '人名'},
{'text': '李强', 'type': '人名'}, # Duplicate
{'text': '张韶涵', 'type': '人名'}, # Duplicate
]
linkage = {
'entity_groups': [
{
'group_id': 'g1',
'group_type': '人名',
'entities': [
{'text': '李强', 'type': '人名', 'is_primary': True},
{'text': '张韶涵', 'type': '人名', 'is_primary': True},
{'text': '张若宇', 'type': '人名', 'is_primary': True},
{'text': '白锦程', 'type': '人名', 'is_primary': True},
]
}
]
}
mapping = processor._generate_masked_mapping(unique_entities, linkage)
# Verify the mapping results
assert mapping['李强'] == '李Q'
assert mapping['张韶涵'] == '张SH'
assert mapping['张若宇'] == '张RY'
assert mapping['白锦程'] == '白JC'
# Check that duplicates are handled correctly
# The second occurrence should be numbered
assert '李Q2' in mapping.values() or '张SH2' in mapping.values()
def test_lawyer_and_judge_names():
"""Test that lawyer and judge names follow the same Chinese name rules"""
processor = NerProcessor()
# Test lawyer and judge names
test_entities = [
{'text': '王律师', 'type': '律师姓名'},
{'text': '李法官', 'type': '审判人员姓名'},
{'text': '张检察官', 'type': '检察官姓名'},
]
linkage = {
'entity_groups': [
{
'group_id': 'g1',
'group_type': '律师姓名',
'entities': [{'text': '王律师', 'type': '律师姓名', 'is_primary': True}]
},
{
'group_id': 'g2',
'group_type': '审判人员姓名',
'entities': [{'text': '李法官', 'type': '审判人员姓名', 'is_primary': True}]
},
{
'group_id': 'g3',
'group_type': '检察官姓名',
'entities': [{'text': '张检察官', 'type': '检察官姓名', 'is_primary': True}]
}
]
}
mapping = processor._generate_masked_mapping(test_entities, linkage)
# These should follow the same Chinese name masking rules
assert mapping['王律师'] == '王L'
assert mapping['李法官'] == '李F'
assert mapping['张检察官'] == '张JC'