51 lines
1.8 KiB
Python
51 lines
1.8 KiB
Python
import pandas as pd
|
||
from typing import List
|
||
|
||
def strip_character(column_name, characters: List[str]):
|
||
|
||
new_col_name = column_name
|
||
for character in characters:
|
||
new_col_name = new_col_name.replace(character, '')
|
||
new_col_name = new_col_name.strip()
|
||
return new_col_name
|
||
|
||
def refine_content(df):
|
||
strip_character_list = [' ', '\n', ':', ':','其他']
|
||
for col in df.columns:
|
||
df[col] = df[col].apply(lambda x: "其他" if strip_character(x, strip_character_list) == "" else strip_character(x, strip_character_list))
|
||
return df
|
||
|
||
def get_acv_distribution(df, acv_name, industry_col_name):
|
||
# Define the bins for ACV intervals
|
||
bins = [0, 1e6, 5e6, float('inf')]
|
||
labels = ['<100万', '100万-500万', '>500万']
|
||
# Create a new column 'ACV Interval' based on the bins
|
||
df['ACV Interval'] = pd.cut(df[acv_name], bins=bins, labels=labels, right=False)
|
||
industry_acv_distribution = df.groupby([industry_col_name, 'ACV Interval']).size().unstack(fill_value=0)
|
||
industry_acv_distribution.loc['Total'] = industry_acv_distribution.sum()
|
||
return industry_acv_distribution
|
||
|
||
# Define the bins for ACV intervals
|
||
df = pd.read_excel('./data_src/pingcap_won.xlsx')
|
||
|
||
|
||
print('---------成单:ACV Distribution by industry--------')
|
||
|
||
print(get_acv_distribution(df, 'ACV', '客户分类'))
|
||
|
||
|
||
print('---------成单:ACV Distribution by sub-industry--------')
|
||
|
||
print(get_acv_distribution(df, 'ACV', '客户行业'))
|
||
|
||
|
||
df_pipeline = pd.read_excel('./data_src/pingcap_pipeline.xlsx')
|
||
|
||
print('---------Pipeline:ACV Distribution by industry--------')
|
||
|
||
print(get_acv_distribution(df_pipeline, '预估 ACV', '负责人所属行业'))
|
||
|
||
|
||
print('---------Pipeline:ACV Distribution by sub-industry--------')
|
||
|
||
print(get_acv_distribution(df_pipeline, '预估 ACV', '客户行业')) |