market_assistant/random_pick_crm_mandatory.py

55 lines
1.7 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from linguistic_checker import LinguisticChecker
import pandas as pd
api_key = '25bda2c39c0f8ca0'
api_secret = 'e0008b9b9727cb8ceea5a132dbe62495'
assistant_id = "66bb09a84673b57506fe7bbd"
checker = LinguisticChecker(api_key, api_secret, assistant_id)
df = pd.read_excel('./data_src/pingcap_pipeline.xlsx')
report = []
crm_fields = ['客户业务场景','友商信息']
for crm_field in crm_fields:
# Randomly select 20 items from the DataFrame
random_pick_20 = df.sample(n=20, random_state=42)
# Reset the index of the randomly selected items
random_pick_20 = random_pick_20.reset_index(drop=True)
print(f"Randomly selected {len(random_pick_20)} items from the DataFrame.")
# Iterate over the DataFrame
for index, row in random_pick_20.iterrows():
try:
# Adjust these names if they're different in your actual file
user_input = row[crm_field]
# Check the input using the LinguisticChecker
result = checker.check_input(crm_field, user_input)
# result = 'ssss'
# Append the results to the report list
report.append({
'商机ID':row['唯一性ID必填'],
'CRM必填项': crm_field,
'用户输入': user_input,
'分析诊断': result
})
except Exception as e:
print(f"Error processing row {index}: {str(e)}")
result = f"Error processing row {index}: {str(e)}"
# Convert the report list to a DataFrame
report_df = pd.DataFrame(report)
# Write the DataFrame to an Excel file
output_file = 'crm_mandatory_fields_analysis.xlsx'
report_df.to_excel(output_file, index=False)
print(f"Analysis report has been saved to {output_file}")