market_assistant/llm_action_result_analysis.py

138 lines
4.1 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import pandas as pd
from typing import List
from openpyxl import Workbook
from AgentProxy import AgentProxy
api_key = 'c6bbe7f48063a2c1'
api_secret = '5f8e7d3a97465cc099bf19bd1b70c266'
assistant_id = "66bb09a84673b57506fe7bbd"
agent = AgentProxy(assistant_id, api_key, api_secret)
# Stage: Evaluation
# 客户接触与需求识别: 188.89%
# 项目支持与优化: 91.11%
# 产品演示与方案提供: 80.00%
# 市场分析与策略调整: 80.00%
# Stage: Qualification
# 客户接触与需求识别: 154.24%
# 项目支持与优化: 144.07%
# 商务谈判与合同准备: 113.56%
# 内部协调与支持: 83.05%
# Stage: Bidding+Negotiation
# 商务谈判与合同准备: 162.86%
# 客户接触与需求识别: 130.00%
# 项目支持与优化: 125.71%
# 内部协调与支持: 111.43%
# Stage: Closed Won
# 商务谈判与合同准备: 130.77%
# 内部协调与支持: 123.08%
# 项目支持与优化: 123.08%
# 合同审查与订单处理: 115.38%
most_frequent_actions = {
"Evaluation": [
"客户接触与需求识别",
"项目支持与优化",
"产品演示与方案提供",
"市场分析与策略调整"
],
"Qualification": [
"客户接触与需求识别",
"项目支持与优化",
"商务谈判与合同准备",
"内部协调与支持"
],
"Bidding+Negotiation": [
"商务谈判与合同准备",
"客户接触与需求识别",
"项目支持与优化",
"内部协调与支持"
],
"Closed Won": [
"商务谈判与合同准备",
"内部协调与支持",
"项目支持与优化",
"合同审查与订单处理"
]
}
# Stage: Evaluation
# 完成技术评估与测试: 4.44%
# 完成市场调研与竞争分析: 4.44%
# 完成需求确认与收集: 2.22%
# 完成项目立项与采购流程: 2.22%
# Stage: Qualification
# 完成需求确认与收集: 1.69%
# 完成技术评估与测试: 1.69%
# 完成商务谈判与合同准备: 1.69%
# 完成内部审批与预算确认: 1.69%
# Stage: Bidding+Negotiation
# 完成技术评估与测试: 2.86%
# 完成市场调研与竞争分析: 2.86%
# 完成需求确认与收集: 1.43%
# 完成项目立项与采购流程: 1.43%
# Stage: Closed Won
# 完成商务谈判与合同准备: 3.85%
# 完成关系建立与维护: 3.85%
# 完成续约与增购谈判: 3.85%
# 完成需求确认与收集: 0.00%
top_action_results = {
"Evaluation": [
"完成技术评估与测试",
"完成市场调研与竞争分析",
"完成需求确认与收集",
"完成项目立项与采购流程"
],
"Qualification": [
"完成需求确认与收集",
"完成技术评估与测试",
"完成商务谈判与合同准备",
"完成内部审批与预算确认"
],
"Bidding+Negotiation": [
"完成需求确认与收集",
"完成技术评估与测试",
"完成项目立项与采购流程",
"完成市场调研与竞争分析"
],
"Closed Won": [
"完成商务谈判与合同准备",
"完成关系建立与维护",
"完成续约与增购谈判",
"完成需求确认与收集"
],
}
stages = ["Evaluation", "Qualification", "Bidding+Negotiation", "Closed Won"]
for stage in stages:
print(f"Stage: {stage}")
prompt = f"""
任务:
你作为一个资深的销售领域专家下面的输入数据给出了销售阶段该销售阶段最频繁的销售行动该销售阶段最top的行动结果
分析:
1. 销售的行动和结果是否匹配和相关
2. 销售的行动和结果是否正相关是否存在gap
3. 销售的行动和结果是否和当前的销售阶段相匹配
输入:
销售阶段:{stage}
最频繁的销售行动:{most_frequent_actions[stage]}
最top的行动结果{top_action_results[stage]}
输出:
按照上述分析要点给出的分析结果和分析报告
"""
print(agent.send_message(prompt))