138 lines
4.1 KiB
Python
138 lines
4.1 KiB
Python
import pandas as pd
|
||
from typing import List
|
||
from openpyxl import Workbook
|
||
from AgentProxy import AgentProxy
|
||
|
||
api_key = 'c6bbe7f48063a2c1'
|
||
api_secret = '5f8e7d3a97465cc099bf19bd1b70c266'
|
||
assistant_id = "66bb09a84673b57506fe7bbd"
|
||
agent = AgentProxy(assistant_id, api_key, api_secret)
|
||
|
||
|
||
|
||
# Stage: Evaluation
|
||
# 客户接触与需求识别: 188.89%
|
||
# 项目支持与优化: 91.11%
|
||
# 产品演示与方案提供: 80.00%
|
||
# 市场分析与策略调整: 80.00%
|
||
|
||
|
||
# Stage: Qualification
|
||
# 客户接触与需求识别: 154.24%
|
||
# 项目支持与优化: 144.07%
|
||
# 商务谈判与合同准备: 113.56%
|
||
# 内部协调与支持: 83.05%
|
||
|
||
# Stage: Bidding+Negotiation
|
||
# 商务谈判与合同准备: 162.86%
|
||
# 客户接触与需求识别: 130.00%
|
||
# 项目支持与优化: 125.71%
|
||
# 内部协调与支持: 111.43%
|
||
|
||
|
||
# Stage: Closed Won
|
||
# 商务谈判与合同准备: 130.77%
|
||
# 内部协调与支持: 123.08%
|
||
# 项目支持与优化: 123.08%
|
||
# 合同审查与订单处理: 115.38%
|
||
most_frequent_actions = {
|
||
"Evaluation": [
|
||
"客户接触与需求识别",
|
||
"项目支持与优化",
|
||
"产品演示与方案提供",
|
||
"市场分析与策略调整"
|
||
],
|
||
"Qualification": [
|
||
"客户接触与需求识别",
|
||
"项目支持与优化",
|
||
"商务谈判与合同准备",
|
||
"内部协调与支持"
|
||
],
|
||
"Bidding+Negotiation": [
|
||
"商务谈判与合同准备",
|
||
"客户接触与需求识别",
|
||
"项目支持与优化",
|
||
"内部协调与支持"
|
||
],
|
||
"Closed Won": [
|
||
"商务谈判与合同准备",
|
||
"内部协调与支持",
|
||
"项目支持与优化",
|
||
"合同审查与订单处理"
|
||
]
|
||
}
|
||
|
||
|
||
# Stage: Evaluation
|
||
# 完成技术评估与测试: 4.44%
|
||
# 完成市场调研与竞争分析: 4.44%
|
||
# 完成需求确认与收集: 2.22%
|
||
# 完成项目立项与采购流程: 2.22%
|
||
# Stage: Qualification
|
||
# 完成需求确认与收集: 1.69%
|
||
# 完成技术评估与测试: 1.69%
|
||
# 完成商务谈判与合同准备: 1.69%
|
||
# 完成内部审批与预算确认: 1.69%
|
||
# Stage: Bidding+Negotiation
|
||
# 完成技术评估与测试: 2.86%
|
||
# 完成市场调研与竞争分析: 2.86%
|
||
# 完成需求确认与收集: 1.43%
|
||
# 完成项目立项与采购流程: 1.43%
|
||
# Stage: Closed Won
|
||
# 完成商务谈判与合同准备: 3.85%
|
||
# 完成关系建立与维护: 3.85%
|
||
# 完成续约与增购谈判: 3.85%
|
||
# 完成需求确认与收集: 0.00%
|
||
|
||
top_action_results = {
|
||
"Evaluation": [
|
||
"完成技术评估与测试",
|
||
"完成市场调研与竞争分析",
|
||
"完成需求确认与收集",
|
||
"完成项目立项与采购流程"
|
||
],
|
||
"Qualification": [
|
||
"完成需求确认与收集",
|
||
"完成技术评估与测试",
|
||
"完成商务谈判与合同准备",
|
||
"完成内部审批与预算确认"
|
||
],
|
||
"Bidding+Negotiation": [
|
||
"完成需求确认与收集",
|
||
"完成技术评估与测试",
|
||
"完成项目立项与采购流程",
|
||
"完成市场调研与竞争分析"
|
||
],
|
||
"Closed Won": [
|
||
"完成商务谈判与合同准备",
|
||
"完成关系建立与维护",
|
||
"完成续约与增购谈判",
|
||
"完成需求确认与收集"
|
||
],
|
||
}
|
||
|
||
stages = ["Evaluation", "Qualification", "Bidding+Negotiation", "Closed Won"]
|
||
|
||
for stage in stages:
|
||
print(f"Stage: {stage}")
|
||
prompt = f"""
|
||
任务:
|
||
你作为一个资深的销售领域专家,下面的输入数据给出了销售阶段,该销售阶段最频繁的销售行动,该销售阶段最top的行动结果,
|
||
分析:
|
||
1. 销售的行动和结果是否匹配和相关
|
||
2. 销售的行动和结果是否正相关,是否存在gap
|
||
3. 销售的行动和结果是否和当前的销售阶段相匹配
|
||
|
||
输入:
|
||
销售阶段:{stage}
|
||
最频繁的销售行动:{most_frequent_actions[stage]}
|
||
最top的行动结果:{top_action_results[stage]}
|
||
|
||
输出:
|
||
按照上述分析要点给出的分析结果和分析报告
|
||
|
||
"""
|
||
print(agent.send_message(prompt))
|
||
|
||
|