market_assistant/analyze_won_criteria.py

80 lines
2.8 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from AgentProxy import AgentProxy
# 根据实际的销售行动结果和销售关键动作结合AI的先验知识提出阶段转化标准
api_key = 'c6bbe7f48063a2c1'
api_secret = '5f8e7d3a97465cc099bf19bd1b70c266'
assistant_id = "66bb09a84673b57506fe7bbd"
agent = AgentProxy(assistant_id, api_key, api_secret)
sales = [
{
"stage": "02-evaluation",
"high_frequency_tasks": [
"完成需求确认与收集",
"完成技术评估与测试",
"完成项目立项与采购流程",
"完成市场调研与竞争分析"
],
"high_frequency_actions": [
"客户接触与需求识别",
"产品演示与方案提供",
"商务谈判与合同准备",
"项目支持与优化",
"内部协调与支持"
],
"next_stage": "03-qualification"
},
{
"stage": "03-qualification",
"high_frequency_tasks": [
"完成需求确认与收集",
"完成技术评估与测试",
"完成商务谈判与合同准备",
"完成内部审批与预算确认"
],
"high_frequency_actions": [
"客户关系维护",
"项目支持与优化",
"客户接触与需求识别",
"内部协调与支持",
"商务谈判与合同准备"
],
"next_stage": "04-bidding/negotiating"
},
{
"stage": "04-bidding/negotiating",
"high_frequency_tasks": [
"完成需求确认与收集",
"完成技术评估与测试",
"完成项目立项与采购流程",
"完成市场调研与竞争分析"
],
"high_frequency_actions": [
"客户关系维护",
"合同审查与订单处理",
"客户接触与需求识别",
"商务谈判与合同准备"
],
"next_stage": "closed won"
}
]
for sale in sales:
stage = sale["stage"]
high_frequency_tasks = sale["high_frequency_tasks"]
high_frequency_actions = sale["high_frequency_actions"]
next_stage = sale["next_stage"]
prompt = f"""
你是一个销售领域的专家,
你根据当前销售阶段 {stage} ,
某公司统计出的高频销售阶段任务如下:
{high_frequency_tasks}
对应阶段的销售关键动作如下:
{high_frequency_actions}
请根据以上信息,以及你作为相关专家的经验,给出针对该销售阶段{stage}转化到下一阶段{next_stage}的阶段转化标准,请注意转化标准不要直接使用上面给出的高频任务和高频动作,而要做一定的抽象、总结、归纳,形成一个通用的、抽象的转化标准
"""
print(f"---------------stage:{stage}---------------")
# print(prompt)
print(agent.send_message(prompt))