diff --git a/random_pick_crm_mandatory.py b/random_pick_crm_mandatory.py index 880d158..21f061b 100644 --- a/random_pick_crm_mandatory.py +++ b/random_pick_crm_mandatory.py @@ -9,16 +9,46 @@ checker = LinguisticChecker(api_key, api_secret, assistant_id) df = pd.read_excel('./data_src/pingcap_pipeline.xlsx') +report = [] + + +crm_fields = ['客户业务场景','友商信息'] + +for crm_field in crm_fields: + # Randomly select 20 items from the DataFrame + random_pick_20 = df.sample(n=20, random_state=42) + + # Reset the index of the randomly selected items + random_pick_20 = random_pick_20.reset_index(drop=True) + + print(f"Randomly selected {len(random_pick_20)} items from the DataFrame.") # Iterate over the DataFrame -for index, row in df.iterrows(): - try: - # Assuming 'CRM Field' and 'User Input' are column names in the Excel file - # Adjust these names if they're different in your actual file - crm_field = row['CRM Field'] - user_input = row['User Input'] - - # Check the input using the LinguisticChecker - result = checker.check_input(crm_field, user_input) - except Exception as e: - print(f"Error processing row {index}: {str(e)}") - result = None + for index, row in random_pick_20.iterrows(): + try: + # Adjust these names if they're different in your actual file + user_input = row[crm_field] + + # Check the input using the LinguisticChecker + result = checker.check_input(crm_field, user_input) + # result = 'ssss' + # Append the results to the report list + report.append({ + '商机ID':row['唯一性ID(必填)'], + 'CRM必填项': crm_field, + '用户输入': user_input, + '分析诊断': result + }) + except Exception as e: + print(f"Error processing row {index}: {str(e)}") + result = f"Error processing row {index}: {str(e)}" + + # Convert the report list to a DataFrame +report_df = pd.DataFrame(report) + +# Write the DataFrame to an Excel file +output_file = 'crm_mandatory_fields_analysis.xlsx' +report_df.to_excel(output_file, index=False) + +print(f"Analysis report has been saved to {output_file}") + +