llm_hub/app/services/zhipu_service.py

152 lines
6.4 KiB
Python

import logging
import time
from zhipuai import ZhipuAI
from app.services.ai_service_interface import AIServiceInterface
from app.utils.prompt_repository import PromptRepository
logger = logging.getLogger(__name__)
class ZhipuService(AIServiceInterface):
def __init__(self):
self.model_name = "glm-4"
self.app_secret_key = "d54f764a1d67c17d857bd3983b772016.GRjowY0fyiMNurLc"
self.client = ZhipuAI(api_key=self.app_secret_key)
logger.info("ZhipuService initialized with model: %s", self.model_name)
def generate_response(self, prompt):
logger.info("Starting generate_response call")
start_time = time.time()
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "user", "content": prompt},
],
stream=False,
temperature=0.01,
top_p=0.1,
)
result = response.choices[0].message.content
end_time = time.time()
logger.info("generate_response call completed in %.2f seconds", end_time - start_time)
return result
except Exception as e:
logger.error("Error in generate_response: %s", str(e))
raise
def generate_response_sse(self, prompt):
logger.info("Starting generate_response_sse call")
start_time = time.time()
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "user", "content": prompt},
],
stream=True,
temperature=0.01,
top_p=0.1,
)
for chunk in response:
yield chunk.choices[0].delta.content
end_time = time.time()
logger.info("generate_response_sse call completed in %.2f seconds", end_time - start_time)
except Exception as e:
logger.error("Error in generate_response_sse: %s", str(e))
raise
def retrive(self, message, knowledge_id, prompt_template):
logger.info("Starting retrive call with knowledge_id: %s", knowledge_id)
start_time = time.time()
default_prompt = "从文档\n\"\"\"\n{{knowledge}}\n\"\"\"\n中找问题\n\"\"\"\n{{question}}\n\"\"\"\n的答案,找到答案就仅使用文档语句回答问题,找不到答案就用自身知识回答并且告诉用户该信息不是来自文档。\n不要复述问题,直接开始回答。"
if prompt_template is None or prompt_template == "":
prompt_template = default_prompt
try:
response = self.client.chat.completions.create(
model="glm-4",
messages=[
{"role": "user", "content": message},
],
tools=[
{
"type": "retrieval",
"retrieval": {
"knowledge_id": knowledge_id,
"prompt_template": prompt_template
}
}
],
stream=False,
temperature=0.01,
top_p=0.1,
)
result = response.choices[0].message.content
end_time = time.time()
logger.info("retrive call completed in %.2f seconds", end_time - start_time)
return result
except Exception as e:
logger.error("Error in retrive: %s", str(e))
raise
def retrive_sse(self, message, knowledge_id, prompt_template=None,system_prompt=None):
logger.info("Starting retrive_sse call with knowledge_id: %s, message:%s", knowledge_id, message)
start_time = time.time()
default_prompt = "从文档\n\"\"\"\n{{knowledge}}\n\"\"\"\n中找问题\n\"\"\"\n{{question}}\n\"\"\"\n的答案,找到答案就仅使用文档语句回答问题,找不到答案就告诉用户知识库中没有该信息。\n不要复述问题,直接开始回答。"
messages = [{"role": "user", "content": message}]
# if system_prompt != None:
# messages.append({"role": "system", "content": system_prompt})
if prompt_template is None or prompt_template == "":
prompt_template = default_prompt
try:
response = self.client.chat.completions.create(
model="glm-4",
messages=messages,
tools=[
{
"type": "retrieval",
"retrieval": {
"knowledge_id": knowledge_id,
"prompt_template": prompt_template
}
}
],
stream=True,
temperature=0.01,
top_p=0.1,
)
for chunk in response:
yield chunk.choices[0].delta.content
end_time = time.time()
logger.info("retrive_sse call completed in %.2f seconds", end_time - start_time)
except Exception as e:
logger.error("Error in retrive_sse: %s", str(e))
raise
def check_report_missing_info(self, message):
logger.info("Starting check_report_missing_info call")
#1. 日志模版
prompt_report_template = PromptRepository().get_prompt("report_template")
prompt_report_missing_check = f"""{prompt_report_template}
请检查以下日志信息是否完整,如果信息缺失则提示要求用户需要补充的信息要点,如果信息完整请直接返回"上述日志信息为全部信息"。日志信息如下:\n\"\"\"\n{message}\n\"\"\"\n"""
try:
response = self.client.chat.completions.create(
model="glm-4-flash",
messages=[
{"role": "user", "content": prompt_report_missing_check},
],
stream=True,
temperature=0.01,
top_p=0.1,
)
for chunk in response:
yield chunk.choices[0].delta.content
end_time = time.time()
logger.info("check_report_missing_info call completed in %.2f seconds", end_time - start_time)
except Exception as e:
logger.error("Error in check_report_missing_info: %s", str(e))
raise