llm_hub/app/services/zhipu_alltool_service.py

88 lines
3.2 KiB
Python

import logging
import time
from zhipuai import ZhipuAI
logger = logging.getLogger(__name__)
class ZhipuAlltoolService:
def __init__(self):
self.model_name = "glm-4-alltools"
self.app_secret_key = "d54f764a1d67c17d857bd3983b772016.GRjowY0fyiMNurLc"
logger.info("ZhipuAlltoolService initialized with model: %s", self.model_name)
def func_call_classify(self, message):
logger.info("Starting web_search call")
start_time = time.time()
client = ZhipuAI(api_key=self.app_secret_key)
tools = [
{
"type": "function",
"function": {
"name": "classify_user_input",
"description": "根据用户输入,判断用户意图,返回意图类型",
"parameters": {
"type": "object",
"properties": {
"category": {
"type": "string",
"description": "用户的意图有以下选项:web_search,retrive_knowledge,generate_report",
}
},
"required": ["category"],
},
}
}
]
messages = [
{
"role": "user",
"content": f"判断以下用户输入的意图并将其分类返回意图类型:{message}"
}
]
try:
response = client.chat.completions.create(
model="glm-4-flash", # 填写需要调用的模型名称
messages= messages,
tools= tools,
tool_choice="auto"
)
print(response)
return response.choices[0].message.tool_calls[0].function.arguments
except Exception as e:
logger.error("Error in web_search call: %s", str(e))
raise e
def web_search_sse(self, message):
logger.info("Starting web_search_sse call")
start_time = time.time()
client = ZhipuAI(api_key=self.app_secret_key)
try:
response = client.chat.completions.create(
model="glm-4-alltools", # 填写需要调用的模型名称
messages=[
{
"role": "user",
"content":[
{
"type":"text",
"text":message
}
]
}
],
stream=True,
tools=[
{
"type": "web_browser"
}
]
)
for chunk in response:
# print(chunk)
print("content: ",chunk.choices[0].delta.content)
print("tool_calls: ",chunk.choices[0].delta.tool_calls)
logger.info("content: %s", str(chunk))
yield chunk.choices[0].delta.content
except Exception as e:
logger.error("Error in web_search_sse call: %s", str(e))
raise e