增加了日志,记录调用zhipu api的时间

This commit is contained in:
Tiger Ren 2024-10-10 15:58:05 +08:00
parent fcd3c4f62a
commit 24d4ffbce5
1 changed files with 99 additions and 69 deletions

View File

@ -1,6 +1,6 @@
from zhipuai import ZhipuAI
import logging
import time
from zhipuai import ZhipuAI
logger = logging.getLogger(__name__)
@ -8,87 +8,117 @@ class ZhipuService:
def __init__(self):
self.model_name = "glm-4"
self.app_secret_key = "d54f764a1d67c17d857bd3983b772016.GRjowY0fyiMNurLc"
logger.info("ZhipuService initialized with model: %s", self.model_name)
def talk_to_zhipu(self, message):
client = ZhipuAI(api_key=self.app_secret_key) # 请填写您自己的APIKey
response = client.chat.completions.create(
model=self.model_name, # 填写需要调用的模型名称
messages=[
{"role": "user", "content": message},
],
stream=False, # 流式输出
temperature= 0.01, #随机度越大越发散0.01则是一个比较确定和稳定的输出
top_p= 0.1, #选择前 10% 概率的 tokens 作为候选,也是影响随机程度
)
accum_resp = response.choices[0].message.content
logger.info("Starting talk_to_zhipu call")
start_time = time.time()
client = ZhipuAI(api_key=self.app_secret_key)
try:
response = client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "user", "content": message},
],
stream=False,
temperature=0.01,
top_p=0.1,
)
accum_resp = response.choices[0].message.content
end_time = time.time()
logger.info("talk_to_zhipu call completed in %.2f seconds", end_time - start_time)
return accum_resp
except Exception as e:
logger.error("Error in talk_to_zhipu: %s", str(e))
raise
return accum_resp
def talk_to_zhipu_sse(self, message):
client = ZhipuAI(api_key=self.app_secret_key) # 请填写您自己的APIKey
response = client.chat.completions.create(
model=self.model_name, # 填写需要调用的模型名称
messages=[
{"role": "user", "content": message},
],
stream=True, # 流式输出
temperature= 0.01, #随机度越大越发散0.01则是一个比较确定和稳定的输出
top_p= 0.1, #选择前 10% 概率的 tokens 作为候选,也是影响随机程度
)
logger.info("Starting talk_to_zhipu_sse call")
start_time = time.time()
client = ZhipuAI(api_key=self.app_secret_key)
try:
response = client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "user", "content": message},
],
stream=True,
temperature=0.01,
top_p=0.1,
)
for chunk in response:
yield chunk.choices[0].delta.content
end_time = time.time()
logger.info("talk_to_zhipu_sse call completed in %.2f seconds", end_time - start_time)
except Exception as e:
logger.error("Error in talk_to_zhipu_sse: %s", str(e))
raise
for chunk in response:
print(chunk.choices[0].delta.content)
yield chunk.choices[0].delta.content
def retrive(self, message, knowledge_id, prompt_template):
logger.info("Starting retrive call with knowledge_id: %s", knowledge_id)
start_time = time.time()
client = ZhipuAI(api_key=self.app_secret_key)
default_prompt = "从文档\n\"\"\"\n{{knowledge}}\n\"\"\"\n中找问题\n\"\"\"\n{{question}}\n\"\"\"\n的答案,找到答案就仅使用文档语句回答问题,找不到答案就用自身知识回答并且告诉用户该信息不是来自文档。\n不要复述问题,直接开始回答。"
if prompt_template is None or prompt_template == "":
prompt_template = default_prompt
response = client.chat.completions.create(
model="glm-4",
messages=[
{"role": "user", "content": message},
],
tools=[
{
"type": "retrieval",
"retrieval": {
"knowledge_id": knowledge_id,
"prompt_template": prompt_template
}
}
],
stream=False,
temperature=0.01,
top_p=0.1,
)
return response.choices[0].message.content
def retrive_sse(self, message, knowledge_id, prompt_template):
client = ZhipuAI(api_key=self.app_secret_key) # 请填写您自己的APIKey
default_prompt = "从文档\n\"\"\"\n{{knowledge}}\n\"\"\"\n中找问题\n\"\"\"\n{{question}}\n\"\"\"\n的答案,找到答案就仅使用文档语句回答问题,找不到答案就用自身知识回答并且告诉用户该信息不是来自文档。\n不要复述问题,直接开始回答。"
if prompt_template is None or prompt_template == "":
prompt_template = default_prompt
response = client.chat.completions.create(
model="glm-4", # 填写需要调用的模型名称
messages=[
{"role": "user", "content": message},
],
tools=[
try:
response = client.chat.completions.create(
model="glm-4",
messages=[
{"role": "user", "content": message},
],
tools=[
{
"type": "retrieval",
"retrieval": {
"knowledge_id": knowledge_id,
"prompt_template": prompt_template
}
} # 标准prompt可以在上面增加prompt文本但不要改动已有的标准prompt
],
stream=True, # 流式输出
temperature= 0.01, #随机度越大越发散0.01则是一个比较确定和稳定的输出
top_p= 0.1, #选择前 10% 概率的 tokens 作为候选,也是影响随机程度
)
for chunk in response:
print(chunk.choices[0].delta.content)
yield chunk.choices[0].delta.content
}
],
stream=False,
temperature=0.01,
top_p=0.1,
)
result = response.choices[0].message.content
end_time = time.time()
logger.info("retrive call completed in %.2f seconds", end_time - start_time)
return result
except Exception as e:
logger.error("Error in retrive: %s", str(e))
raise
def retrive_sse(self, message, knowledge_id, prompt_template):
logger.info("Starting retrive_sse call with knowledge_id: %s", knowledge_id)
start_time = time.time()
client = ZhipuAI(api_key=self.app_secret_key)
default_prompt = "从文档\n\"\"\"\n{{knowledge}}\n\"\"\"\n中找问题\n\"\"\"\n{{question}}\n\"\"\"\n的答案,找到答案就仅使用文档语句回答问题,找不到答案就用自身知识回答并且告诉用户该信息不是来自文档。\n不要复述问题,直接开始回答。"
if prompt_template is None or prompt_template == "":
prompt_template = default_prompt
try:
response = client.chat.completions.create(
model="glm-4",
messages=[
{"role": "user", "content": message},
],
tools=[
{
"type": "retrieval",
"retrieval": {
"knowledge_id": knowledge_id,
"prompt_template": prompt_template
}
}
],
stream=True,
temperature=0.01,
top_p=0.1,
)
for chunk in response:
yield chunk.choices[0].delta.content
end_time = time.time()
logger.info("retrive_sse call completed in %.2f seconds", end_time - start_time)
except Exception as e:
logger.error("Error in retrive_sse: %s", str(e))
raise