Compare commits

...

4 Commits

Author SHA1 Message Date
oliviamn 88b790dd6b 更新pdf_processor,适用mineru 2025-07-15 00:29:34 +08:00
oliviamn d3e1927bc5 重新启用pdf_processor 2025-07-14 23:49:28 +08:00
oliviamn e8cb7b1a04 feat: 调整ner的mask规则 2025-07-14 23:48:55 +08:00
oliviamn 1ba4f3cc02 feat: 增加构建mapping的日志 2025-07-14 22:24:43 +08:00
14 changed files with 754 additions and 183 deletions

View File

@ -12,7 +12,7 @@ RUN apt-get update && apt-get install -y \
# Copy requirements first to leverage Docker cache
COPY requirements.txt .
RUN pip install huggingface_hub
# RUN pip install huggingface_hub
# RUN wget https://github.com/opendatalab/MinerU/raw/master/scripts/download_models_hf.py -O download_models_hf.py
# RUN wget https://raw.githubusercontent.com/opendatalab/MinerU/refs/heads/release-1.3.1/scripts/download_models_hf.py -O download_models_hf.py
@ -20,7 +20,7 @@ RUN pip install huggingface_hub
RUN pip install --no-cache-dir -r requirements.txt
RUN pip install -U magic-pdf[full]
# RUN pip install -U magic-pdf[full]
# Copy the rest of the application

View File

@ -0,0 +1,202 @@
# PDF Processor with Mineru API
## Overview
The PDF processor has been rewritten to use Mineru's REST API instead of the magic_pdf library. This provides better separation of concerns and allows for more flexible deployment options.
## Changes Made
### 1. Removed Dependencies
- Removed all `magic_pdf` imports and dependencies
- Removed `PyPDF2` direct usage (though kept in requirements for potential other uses)
### 2. New Implementation
- **REST API Integration**: Uses HTTP requests to call Mineru's API
- **Configurable Settings**: Mineru API URL and timeout are configurable
- **Error Handling**: Comprehensive error handling for network issues, timeouts, and API errors
- **Flexible Response Parsing**: Handles multiple possible response formats from Mineru API
### 3. Configuration
Add the following settings to your environment or `.env` file:
```bash
# Mineru API Configuration
MINERU_API_URL=http://mineru-api:8000
MINERU_TIMEOUT=300
MINERU_LANG_LIST=["ch"]
MINERU_BACKEND=pipeline
MINERU_PARSE_METHOD=auto
MINERU_FORMULA_ENABLE=true
MINERU_TABLE_ENABLE=true
```
### 4. API Endpoint
The processor expects Mineru to provide a REST API endpoint at `/file_parse` that accepts PDF files via multipart form data and returns JSON with markdown content.
#### Expected Request Format:
```
POST /file_parse
Content-Type: multipart/form-data
files: [PDF file]
output_dir: ./output
lang_list: ["ch"]
backend: pipeline
parse_method: auto
formula_enable: true
table_enable: true
return_md: true
return_middle_json: false
return_model_output: false
return_content_list: false
return_images: false
start_page_id: 0
end_page_id: 99999
```
#### Expected Response Format:
The processor can handle multiple response formats:
```json
{
"markdown": "# Document Title\n\nContent here..."
}
```
OR
```json
{
"md": "# Document Title\n\nContent here..."
}
```
OR
```json
{
"content": "# Document Title\n\nContent here..."
}
```
OR
```json
{
"result": {
"markdown": "# Document Title\n\nContent here..."
}
}
```
## Usage
### Basic Usage
```python
from app.core.document_handlers.processors.pdf_processor import PdfDocumentProcessor
# Create processor instance
processor = PdfDocumentProcessor("input.pdf", "output.md")
# Read and convert PDF to markdown
content = processor.read_content()
# Process content (apply masking)
processed_content = processor.process_content(content)
# Save processed content
processor.save_content(processed_content)
```
### Through Document Service
```python
from app.core.services.document_service import DocumentService
service = DocumentService()
success = service.process_document("input.pdf", "output.md")
```
## Testing
Run the test script to verify the implementation:
```bash
cd backend
python test_pdf_processor.py
```
Make sure you have:
1. A sample PDF file in the `sample_doc/` directory
2. Mineru API service running and accessible
3. Proper network connectivity between services
## Error Handling
The processor handles various error scenarios:
- **Network Timeouts**: Configurable timeout (default: 5 minutes)
- **API Errors**: HTTP status code errors are logged and handled
- **Response Parsing**: Multiple fallback strategies for extracting markdown content
- **File Operations**: Proper error handling for file reading/writing
## Logging
The processor provides detailed logging for debugging:
- API call attempts and responses
- Content extraction results
- Error conditions and stack traces
- Processing statistics
## Deployment
### Docker Compose
Ensure your Mineru service is running and accessible. The default configuration expects it at `http://mineru-api:8000`.
### Environment Variables
Set the following environment variables in your deployment:
```bash
MINERU_API_URL=http://your-mineru-service:8000
MINERU_TIMEOUT=300
```
## Troubleshooting
### Common Issues
1. **Connection Refused**: Check if Mineru service is running and accessible
2. **Timeout Errors**: Increase `MINERU_TIMEOUT` for large PDF files
3. **Empty Content**: Check Mineru API response format and logs
4. **Network Issues**: Verify network connectivity between services
### Debug Mode
Enable debug logging to see detailed API interactions:
```python
import logging
logging.getLogger('app.core.document_handlers.processors.pdf_processor').setLevel(logging.DEBUG)
```
## Migration from magic_pdf
If you were previously using magic_pdf:
1. **No Code Changes Required**: The interface remains the same
2. **Configuration Update**: Add Mineru API settings
3. **Service Dependencies**: Ensure Mineru service is running
4. **Testing**: Run the test script to verify functionality
## Performance Considerations
- **Timeout**: Large PDFs may require longer timeouts
- **Memory**: The processor loads the entire PDF into memory for API calls
- **Network**: API calls add network latency to processing time
- **Caching**: Consider implementing caching for frequently processed documents

View File

@ -31,6 +31,17 @@ class Settings(BaseSettings):
OLLAMA_API_KEY: str = ""
OLLAMA_MODEL: str = "llama2"
# Mineru API settings
# MINERU_API_URL: str = "http://mineru-api:8001"
MINERU_API_URL: str = "http://host.docker.internal:8001"
MINERU_TIMEOUT: int = 300 # 5 minutes timeout
MINERU_LANG_LIST: list = ["ch"] # Language list for parsing
MINERU_BACKEND: str = "pipeline" # Backend to use
MINERU_PARSE_METHOD: str = "auto" # Parse method
MINERU_FORMULA_ENABLE: bool = True # Enable formula parsing
MINERU_TABLE_ENABLE: bool = True # Enable table parsing
# Logging settings
LOG_LEVEL: str = "INFO"
LOG_FORMAT: str = "%(asctime)s - %(name)s - %(levelname)s - %(message)s"

View File

@ -4,7 +4,7 @@ from .document_processor import DocumentProcessor
from .processors import (
TxtDocumentProcessor,
# DocxDocumentProcessor,
# PdfDocumentProcessor,
PdfDocumentProcessor,
MarkdownDocumentProcessor
)
@ -17,7 +17,7 @@ class DocumentProcessorFactory:
'.txt': TxtDocumentProcessor,
# '.docx': DocxDocumentProcessor,
# '.doc': DocxDocumentProcessor,
# '.pdf': PdfDocumentProcessor,
'.pdf': PdfDocumentProcessor,
'.md': MarkdownDocumentProcessor,
'.markdown': MarkdownDocumentProcessor
}

View File

@ -96,56 +96,136 @@ class NerProcessor:
logger.info(f"Merged {len(unique_entities)} unique entities")
return unique_entities
def _generate_masked_mapping(self, unique_entities: list[Dict[str, str]]) -> Dict[str, str]:
def _generate_masked_mapping(self, unique_entities: list[Dict[str, str]], linkage: Dict[str, Any]) -> Dict[str, str]:
"""
结合 linkage 信息按实体分组映射同一脱敏名并实现如下规则
1. 人名/简称保留姓名变为某同姓编号
2. 公司名同组公司名映射为大写字母公司A公司B公司...
3. 英文人名每个单词首字母+***
4. 英文公司名替换为所属行业名称英文大写如无行业信息默认 COMPANY
5. 项目名项目名称变为小写英文字母 a项目b项目...
6. 案号只替换案号中的数字部分为***保留前后结构和支持中间有空格
7. 身份证号6位X
8. 社会信用代码8位X
9. 地址保留区级及以上行政区划去除详细位置
10. 其他类型按原有逻辑
"""
import re
entity_mapping = {}
used_masked_names = set()
group_mask_map = {}
surname_counter = {}
company_letter = ord('A')
project_letter = ord('a')
# 优先区县级单位,后市、省等
admin_keywords = [
'市辖区', '自治县', '自治旗', '林区', '', '', '', '', '', '地区', '自治州',
'', '', '自治区', '特别行政区'
]
admin_pattern = r"^(.*?(?:" + '|'.join(admin_keywords) + r"))"
for group in linkage.get('entity_groups', []):
group_type = group.get('group_type', '')
entities = group.get('entities', [])
if '公司' in group_type or 'Company' in group_type:
masked = chr(company_letter) + '公司'
company_letter += 1
for entity in entities:
group_mask_map[entity['text']] = masked
elif '人名' in group_type:
surname_local_counter = {}
for entity in entities:
name = entity['text']
if not name:
continue
surname = name[0]
surname_local_counter.setdefault(surname, 0)
surname_local_counter[surname] += 1
if surname_local_counter[surname] == 1:
masked = f"{surname}"
else:
masked = f"{surname}{surname_local_counter[surname]}"
group_mask_map[name] = masked
elif '英文人名' in group_type:
for entity in entities:
name = entity['text']
if not name:
continue
masked = ' '.join([n[0] + '***' if n else '' for n in name.split()])
group_mask_map[name] = masked
for entity in unique_entities:
original_text = entity['text'].strip()
text = entity['text']
entity_type = entity.get('type', '')
if '人名' in entity_type or '英文人名' in entity_type:
base_name = ''
masked_name = base_name
counter = 1
while masked_name in used_masked_names:
if counter <= 10:
suffixes = ['', '', '', '', '', '', '', '', '', '']
masked_name = base_name + suffixes[counter - 1]
if text in group_mask_map:
entity_mapping[text] = group_mask_map[text]
used_masked_names.add(group_mask_map[text])
elif '英文公司名' in entity_type or 'English Company' in entity_type:
industry = entity.get('industry', 'COMPANY')
masked = industry.upper()
entity_mapping[text] = masked
used_masked_names.add(masked)
elif '项目名' in entity_type:
masked = chr(project_letter) + '项目'
project_letter += 1
entity_mapping[text] = masked
used_masked_names.add(masked)
elif '案号' in entity_type:
masked = re.sub(r'(\d[\d\s]*)(号)', r'***\2', text)
entity_mapping[text] = masked
used_masked_names.add(masked)
elif '身份证号' in entity_type:
masked = 'X' * 6
entity_mapping[text] = masked
used_masked_names.add(masked)
elif '社会信用代码' in entity_type:
masked = 'X' * 8
entity_mapping[text] = masked
used_masked_names.add(masked)
elif '地址' in entity_type:
# 保留区级及以上行政区划,去除详细位置
match = re.match(admin_pattern, text)
if match:
masked = match.group(1)
else:
masked = text # fallback
entity_mapping[text] = masked
used_masked_names.add(masked)
elif '人名' in entity_type:
name = text
if not name:
masked = ''
else:
surname = name[0]
surname_counter.setdefault(surname, 0)
surname_counter[surname] += 1
if surname_counter[surname] == 1:
masked = f"{surname}"
else:
masked_name = f"{base_name}{counter}"
counter += 1
masked = f"{surname}{surname_counter[surname]}"
entity_mapping[text] = masked
used_masked_names.add(masked)
elif '公司' in entity_type or 'Company' in entity_type:
base_name = '某公司'
masked_name = base_name
counter = 1
while masked_name in used_masked_names:
if counter <= 10:
suffixes = ['', '', '', '', '', '', '', '', '', '']
masked_name = base_name + suffixes[counter - 1]
else:
masked_name = f"{base_name}{counter}"
counter += 1
masked = chr(company_letter) + '公司'
company_letter += 1
entity_mapping[text] = masked
used_masked_names.add(masked)
elif '英文人名' in entity_type:
name = text
masked = ' '.join([n[0] + '***' if n else '' for n in name.split()])
entity_mapping[text] = masked
used_masked_names.add(masked)
else:
base_name = ''
masked_name = base_name
masked = base_name
counter = 1
while masked_name in used_masked_names:
while masked in used_masked_names:
if counter <= 10:
suffixes = ['', '', '', '', '', '', '', '', '', '']
masked_name = base_name + suffixes[counter - 1]
masked = base_name + suffixes[counter - 1]
else:
masked_name = f"{base_name}{counter}"
masked = f"{base_name}{counter}"
counter += 1
entity_mapping[original_text] = masked_name
used_masked_names.add(masked_name)
logger.info(f"Generated masked mapping for {len(entity_mapping)} entities")
entity_mapping[text] = masked
used_masked_names.add(masked)
return entity_mapping
def _validate_linkage_format(self, linkage: Dict[str, Any]) -> bool:
@ -192,34 +272,10 @@ class NerProcessor:
return {"entity_groups": []}
def _apply_entity_linkage_to_mapping(self, entity_mapping: Dict[str, str], entity_linkage: Dict[str, Any]) -> Dict[str, str]:
updated_mapping = entity_mapping.copy()
for group in entity_linkage.get('entity_groups', []):
group_entities = group.get('entities', [])
if not group_entities:
continue
primary_entity = None
for entity in group_entities:
if entity.get('is_primary', False):
primary_entity = entity
break
if not primary_entity and group_entities:
primary_entity = group_entities[0]
if primary_entity:
primary_text = primary_entity['text']
primary_masked = updated_mapping.get(primary_text)
if primary_masked:
for entity in group_entities:
entity_text = entity['text']
if entity_text in updated_mapping:
updated_mapping[entity_text] = primary_masked
logger.info(f"Linked entity '{entity_text}' to '{primary_text}' with masked name '{primary_masked}'")
return updated_mapping
"""
linkage 已在 _generate_masked_mapping 中处理此处直接返回 entity_mapping
"""
return entity_mapping
def process(self, chunks: list[str]) -> Dict[str, str]:
chunk_mappings = []
@ -237,7 +293,10 @@ class NerProcessor:
entity_linkage = self._create_entity_linkage(unique_entities)
logger.info(f"Entity linkage: {entity_linkage}")
combined_mapping = self._generate_masked_mapping(unique_entities)
# for quick test
# unique_entities = [{'text': '郭东军', 'type': '人名'}, {'text': '王欢子', 'type': '人名'}, {'text': '北京丰复久信营销科技有限公司', 'type': '公司名称'}, {'text': '丰复久信公司', 'type': '公司名称简称'}, {'text': '中研智创区块链技术有限公司', 'type': '公司名称'}, {'text': '中研智才公司', 'type': '公司名称简称'}, {'text': '北京市海淀区北小马厂6 号1 号楼华天大厦1306 室', 'type': '地址'}, {'text': '天津市津南区双港镇工业园区优谷产业园5 号楼-1505', 'type': '地址'}, {'text': '服务合同', 'type': '项目名'}, {'text': '(2022)京 03 民终 3852 号', 'type': '案号'}, {'text': '2020京0105 民初69754 号', 'type': '案号'}, {'text': '李圣艳', 'type': '人名'}, {'text': '闫向东', 'type': '人名'}, {'text': '李敏', 'type': '人名'}, {'text': '布兰登·斯密特', 'type': '英文人名'}, {'text': '中研智创公司', 'type': '公司名称'}, {'text': '丰复久信', 'type': '公司名称简称'}, {'text': '中研智创', 'type': '公司名称简称'}, {'text': '上海市', 'type': '地址'}, {'text': '北京', 'type': '地址'}, {'text': '《计算机设备采购合同》', 'type': '项目名'}, {'text': '《服务合同书》', 'type': '项目名'}]
# entity_linkage = {'entity_groups': [{'group_id': 'group_1', 'group_type': '公司名称', 'entities': [{'text': '北京丰复久信营销科技有限公司', 'type': '公司名称', 'is_primary': True}, {'text': '丰复久信公司', 'type': '公司名称简称', 'is_primary': False}, {'text': '丰复久信', 'type': '公司名称简称', 'is_primary': False}]}, {'group_id': 'group_2', 'group_type': '公司名称', 'entities': [{'text': '中研智创区块链技术有限公司', 'type': '公司名称', 'is_primary': True}, {'text': '中研智创公司', 'type': '公司名称简称', 'is_primary': False}, {'text': '中研智创', 'type': '公司名称简称', 'is_primary': False}]}]}
combined_mapping = self._generate_masked_mapping(unique_entities, entity_linkage)
logger.info(f"Combined mapping: {combined_mapping}")
final_mapping = self._apply_entity_linkage_to_mapping(combined_mapping, entity_linkage)

View File

@ -1,7 +1,7 @@
from .txt_processor import TxtDocumentProcessor
# from .docx_processor import DocxDocumentProcessor
# from .pdf_processor import PdfDocumentProcessor
from .pdf_processor import PdfDocumentProcessor
from .md_processor import MarkdownDocumentProcessor
# __all__ = ['TxtDocumentProcessor', 'DocxDocumentProcessor', 'PdfDocumentProcessor', 'MarkdownDocumentProcessor']
__all__ = ['TxtDocumentProcessor', 'MarkdownDocumentProcessor']
__all__ = ['TxtDocumentProcessor', 'PdfDocumentProcessor', 'MarkdownDocumentProcessor']

View File

@ -0,0 +1,204 @@
import os
import requests
import logging
from typing import Dict, Any, Optional
from ...document_handlers.document_processor import DocumentProcessor
from ...services.ollama_client import OllamaClient
from ...config import settings
logger = logging.getLogger(__name__)
class PdfDocumentProcessor(DocumentProcessor):
def __init__(self, input_path: str, output_path: str):
super().__init__() # Call parent class's __init__
self.input_path = input_path
self.output_path = output_path
self.output_dir = os.path.dirname(output_path)
self.name_without_suff = os.path.splitext(os.path.basename(input_path))[0]
# Setup work directory for temporary files
self.work_dir = os.path.join(
os.path.dirname(output_path),
".work",
os.path.splitext(os.path.basename(input_path))[0]
)
os.makedirs(self.work_dir, exist_ok=True)
self.ollama_client = OllamaClient(model_name=settings.OLLAMA_MODEL, base_url=settings.OLLAMA_API_URL)
# Mineru API configuration
self.mineru_base_url = getattr(settings, 'MINERU_API_URL', 'http://mineru-api:8000')
self.mineru_timeout = getattr(settings, 'MINERU_TIMEOUT', 300) # 5 minutes timeout
self.mineru_lang_list = getattr(settings, 'MINERU_LANG_LIST', ['ch'])
self.mineru_backend = getattr(settings, 'MINERU_BACKEND', 'pipeline')
self.mineru_parse_method = getattr(settings, 'MINERU_PARSE_METHOD', 'auto')
self.mineru_formula_enable = getattr(settings, 'MINERU_FORMULA_ENABLE', True)
self.mineru_table_enable = getattr(settings, 'MINERU_TABLE_ENABLE', True)
def _call_mineru_api(self, file_path: str) -> Optional[Dict[str, Any]]:
"""
Call Mineru API to convert PDF to markdown
Args:
file_path: Path to the PDF file
Returns:
API response as dictionary or None if failed
"""
try:
url = f"{self.mineru_base_url}/file_parse"
with open(file_path, 'rb') as file:
files = {'files': (os.path.basename(file_path), file, 'application/pdf')}
# Prepare form data according to Mineru API specification
data = {
'output_dir': './output',
'lang_list': self.mineru_lang_list,
'backend': self.mineru_backend,
'parse_method': self.mineru_parse_method,
'formula_enable': self.mineru_formula_enable,
'table_enable': self.mineru_table_enable,
'return_md': True,
'return_middle_json': False,
'return_model_output': False,
'return_content_list': False,
'return_images': False,
'start_page_id': 0,
'end_page_id': 99999
}
logger.info(f"Calling Mineru API at {url}")
response = requests.post(
url,
files=files,
data=data,
timeout=self.mineru_timeout
)
if response.status_code == 200:
result = response.json()
logger.info("Successfully received response from Mineru API")
return result
else:
logger.error(f"Mineru API returned status code {response.status_code}: {response.text}")
return None
except requests.exceptions.Timeout:
logger.error(f"Mineru API request timed out after {self.mineru_timeout} seconds")
return None
except requests.exceptions.RequestException as e:
logger.error(f"Error calling Mineru API: {str(e)}")
return None
except Exception as e:
logger.error(f"Unexpected error calling Mineru API: {str(e)}")
return None
def _extract_markdown_from_response(self, response: Dict[str, Any]) -> str:
"""
Extract markdown content from Mineru API response
Args:
response: Mineru API response dictionary
Returns:
Extracted markdown content as string
"""
try:
logger.debug(f"Mineru API response structure: {response}")
# Try different possible response formats based on Mineru API
if 'markdown' in response:
return response['markdown']
elif 'md' in response:
return response['md']
elif 'content' in response:
return response['content']
elif 'text' in response:
return response['text']
elif 'result' in response and isinstance(response['result'], dict):
result = response['result']
if 'markdown' in result:
return result['markdown']
elif 'md' in result:
return result['md']
elif 'content' in result:
return result['content']
elif 'text' in result:
return result['text']
elif 'data' in response and isinstance(response['data'], dict):
data = response['data']
if 'markdown' in data:
return data['markdown']
elif 'md' in data:
return data['md']
elif 'content' in data:
return data['content']
elif 'text' in data:
return data['text']
elif isinstance(response, list) and len(response) > 0:
# If response is a list, try to extract from first item
first_item = response[0]
if isinstance(first_item, dict):
return self._extract_markdown_from_response(first_item)
elif isinstance(first_item, str):
return first_item
else:
# If no standard format found, try to extract from the response structure
logger.warning("Could not find standard markdown field in Mineru response")
# Return the response as string if it's simple, or empty string
if isinstance(response, str):
return response
elif isinstance(response, dict):
# Try to find any text-like content
for key, value in response.items():
if isinstance(value, str) and len(value) > 100: # Likely content
return value
elif isinstance(value, dict):
# Recursively search in nested dictionaries
nested_content = self._extract_markdown_from_response(value)
if nested_content:
return nested_content
return ""
except Exception as e:
logger.error(f"Error extracting markdown from Mineru response: {str(e)}")
return ""
def read_content(self) -> str:
logger.info("Starting PDF content processing with Mineru API")
# Call Mineru API to convert PDF to markdown
mineru_response = self._call_mineru_api(self.input_path)
if not mineru_response:
raise Exception("Failed to get response from Mineru API")
# Extract markdown content from the response
markdown_content = self._extract_markdown_from_response(mineru_response)
if not markdown_content:
raise Exception("No markdown content found in Mineru API response")
logger.info(f"Successfully extracted {len(markdown_content)} characters of markdown content")
# Save the raw markdown content to work directory for reference
md_output_path = os.path.join(self.work_dir, f"{self.name_without_suff}.md")
with open(md_output_path, 'w', encoding='utf-8') as file:
file.write(markdown_content)
logger.info(f"Saved raw markdown content to {md_output_path}")
return markdown_content
def save_content(self, content: str) -> None:
# Ensure output path has .md extension
output_dir = os.path.dirname(self.output_path)
base_name = os.path.splitext(os.path.basename(self.output_path))[0]
md_output_path = os.path.join(output_dir, f"{base_name}.md")
logger.info(f"Saving masked content to: {md_output_path}")
with open(md_output_path, 'w', encoding='utf-8') as file:
file.write(content)

View File

@ -1,105 +0,0 @@
import os
import PyPDF2
from ...document_handlers.document_processor import DocumentProcessor
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.config.enums import SupportedPdfParseMethod
from ...prompts.masking_prompts import get_masking_prompt, get_masking_mapping_prompt
import logging
from ...services.ollama_client import OllamaClient
from ...config import settings
logger = logging.getLogger(__name__)
class PdfDocumentProcessor(DocumentProcessor):
def __init__(self, input_path: str, output_path: str):
super().__init__() # Call parent class's __init__
self.input_path = input_path
self.output_path = output_path
self.output_dir = os.path.dirname(output_path)
self.name_without_suff = os.path.splitext(os.path.basename(input_path))[0]
# Setup output directories
self.local_image_dir = os.path.join(self.output_dir, "images")
self.image_dir = os.path.basename(self.local_image_dir)
os.makedirs(self.local_image_dir, exist_ok=True)
# Setup work directory under output directory
self.work_dir = os.path.join(
os.path.dirname(output_path),
".work",
os.path.splitext(os.path.basename(input_path))[0]
)
os.makedirs(self.work_dir, exist_ok=True)
self.work_local_image_dir = os.path.join(self.work_dir, "images")
self.work_image_dir = os.path.basename(self.work_local_image_dir)
os.makedirs(self.work_local_image_dir, exist_ok=True)
self.ollama_client = OllamaClient(model_name=settings.OLLAMA_MODEL, base_url=settings.OLLAMA_API_URL)
def read_content(self) -> str:
logger.info("Starting PDF content processing")
# Read the PDF file
with open(self.input_path, 'rb') as file:
content = file.read()
# Initialize writers
image_writer = FileBasedDataWriter(self.work_local_image_dir)
md_writer = FileBasedDataWriter(self.work_dir)
# Create Dataset Instance
ds = PymuDocDataset(content)
logger.info("Classifying PDF type: %s", ds.classify())
# Process based on PDF type
if ds.classify() == SupportedPdfParseMethod.OCR:
infer_result = ds.apply(doc_analyze, ocr=True)
pipe_result = infer_result.pipe_ocr_mode(image_writer)
else:
infer_result = ds.apply(doc_analyze, ocr=False)
pipe_result = infer_result.pipe_txt_mode(image_writer)
logger.info("Generating all outputs")
# Generate all outputs
infer_result.draw_model(os.path.join(self.work_dir, f"{self.name_without_suff}_model.pdf"))
model_inference_result = infer_result.get_infer_res()
pipe_result.draw_layout(os.path.join(self.work_dir, f"{self.name_without_suff}_layout.pdf"))
pipe_result.draw_span(os.path.join(self.work_dir, f"{self.name_without_suff}_spans.pdf"))
md_content = pipe_result.get_markdown(self.work_image_dir)
pipe_result.dump_md(md_writer, f"{self.name_without_suff}.md", self.work_image_dir)
content_list = pipe_result.get_content_list(self.work_image_dir)
pipe_result.dump_content_list(md_writer, f"{self.name_without_suff}_content_list.json", self.work_image_dir)
middle_json = pipe_result.get_middle_json()
pipe_result.dump_middle_json(md_writer, f'{self.name_without_suff}_middle.json')
return md_content
# def process_content(self, content: str) -> str:
# logger.info("Starting content masking process")
# sentences = content.split("。")
# final_md = ""
# for sentence in sentences:
# if not sentence.strip(): # Skip empty sentences
# continue
# formatted_prompt = get_masking_mapping_prompt(sentence)
# logger.info("Calling ollama to generate response, prompt: %s", formatted_prompt)
# response = self.ollama_client.generate(formatted_prompt)
# logger.info(f"Response generated: {response}")
# final_md += response + "。"
# return final_md
def save_content(self, content: str) -> None:
# Ensure output path has .md extension
output_dir = os.path.dirname(self.output_path)
base_name = os.path.splitext(os.path.basename(self.output_path))[0]
md_output_path = os.path.join(output_dir, f"{base_name}.md")
logger.info(f"Saving masked content to: {md_output_path}")
with open(md_output_path, 'w', encoding='utf-8') as file:
file.write(content)

View File

@ -90,9 +90,11 @@ class LLMResponseValidator:
"""
try:
validate(instance=response, schema=cls.ENTITY_EXTRACTION_SCHEMA)
logger.debug(f"Entity extraction validation passed for response: {response}")
return True
except ValidationError as e:
logger.warning(f"Entity extraction validation error: {e}")
logger.warning(f"Entity extraction validation failed: {e}")
logger.warning(f"Response that failed validation: {response}")
return False
@classmethod
@ -108,9 +110,16 @@ class LLMResponseValidator:
"""
try:
validate(instance=response, schema=cls.ENTITY_LINKAGE_SCHEMA)
return cls._validate_linkage_content(response)
content_valid = cls._validate_linkage_content(response)
if content_valid:
logger.debug(f"Entity linkage validation passed for response: {response}")
return True
else:
logger.warning(f"Entity linkage content validation failed for response: {response}")
return False
except ValidationError as e:
logger.warning(f"Entity linkage validation error: {e}")
logger.warning(f"Entity linkage validation failed: {e}")
logger.warning(f"Response that failed validation: {response}")
return False
@classmethod
@ -126,9 +135,11 @@ class LLMResponseValidator:
"""
try:
validate(instance=response, schema=cls.REGEX_ENTITY_SCHEMA)
logger.debug(f"Regex entity validation passed for response: {response}")
return True
except ValidationError as e:
logger.warning(f"Regex entity validation error: {e}")
logger.warning(f"Regex entity validation failed: {e}")
logger.warning(f"Response that failed validation: {response}")
return False
@classmethod

127
backend/log Normal file
View File

@ -0,0 +1,127 @@
[2025-07-14 14:20:19,015: INFO/ForkPoolWorker-4] Raw response from LLM: {
celery_worker-1 | "entities": []
celery_worker-1 | }
celery_worker-1 | [2025-07-14 14:20:19,016: INFO/ForkPoolWorker-4] Parsed mapping: {'entities': []}
celery_worker-1 | [2025-07-14 14:20:19,020: INFO/ForkPoolWorker-4] Calling ollama to generate case numbers mapping for chunk (attempt 1/3):
celery_worker-1 | 你是一个专业的法律文本实体识别助手。请从以下文本中抽取出所有需要脱敏的敏感信息并按照指定的类别进行分类。请严格按照JSON格式输出结果。
celery_worker-1 |
celery_worker-1 | 实体类别包括:
celery_worker-1 | - 案号
celery_worker-1 |
celery_worker-1 | 待处理文本:
celery_worker-1 |
celery_worker-1 |
celery_worker-1 | 二审案件受理费450892 元,由北京丰复久信营销科技有限公司负担(已交纳)。
celery_worker-1 |
celery_worker-1 | 29. 本判决为终审判决。
celery_worker-1 |
celery_worker-1 | 审 判 长 史晓霞审 判 员 邓青菁审 判 员 李 淼二〇二二年七月七日法 官 助 理 黎 铧书 记 员 郑海兴
celery_worker-1 |
celery_worker-1 | 输出格式:
celery_worker-1 | {
celery_worker-1 | "entities": [
celery_worker-1 | {"text": "原始文本内容", "type": "案号"},
celery_worker-1 | ...
celery_worker-1 | ]
celery_worker-1 | }
celery_worker-1 |
celery_worker-1 | 请严格按照JSON格式输出结果。
celery_worker-1 |
api-1 | INFO: 192.168.65.1:60045 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:34054 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:34054 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:22084 - "GET /api/v1/files/files HTTP/1.1" 200 OK
celery_worker-1 | [2025-07-14 14:20:31,279: INFO/ForkPoolWorker-4] Raw response from LLM: {
celery_worker-1 | "entities": []
celery_worker-1 | }
celery_worker-1 | [2025-07-14 14:20:31,281: INFO/ForkPoolWorker-4] Parsed mapping: {'entities': []}
celery_worker-1 | [2025-07-14 14:20:31,287: INFO/ForkPoolWorker-4] Chunk mapping: [{'entities': []}, {'entities': [{'text': '北京丰复久信营销科技有限公司', 'type': '公司名称'}]}, {'entities': []}, {'entities': []}, {'entities': []}]
celery_worker-1 | [2025-07-14 14:20:31,288: INFO/ForkPoolWorker-4] Final chunk mappings: [{'entities': [{'text': '郭东军', 'type': '人名'}, {'text': '王欢子', 'type': '人名'}]}, {'entities': [{'text': '北京丰复久信营销科技有限公司', 'type': '公司名称'}, {'text': '丰复久信公司', 'type': '公司名称简称'}, {'text': '中研智创区块链技术有限公司', 'type': '公司名称'}, {'text': '中研智才公司', 'type': '公司名称简称'}]}, {'entities': [{'text': '北京市海淀区北小马厂6 号1 号楼华天大厦1306 室', 'type': '地址'}, {'text': '天津市津南区双港镇工业园区优谷产业园5 号楼-1505', 'type': '地址'}]}, {'entities': [{'text': '服务合同', 'type': '项目名'}]}, {'entities': [{'text': '(2022)京 03 民终 3852 号', 'type': '案号'}, {'text': '2020京0105 民初69754 号', 'type': '案号'}]}, {'entities': [{'text': '李圣艳', 'type': '人名'}, {'text': '闫向东', 'type': '人名'}, {'text': '李敏', 'type': '人名'}, {'text': '布兰登·斯密特', 'type': '英文人名'}]}, {'entities': [{'text': '丰复久信公司', 'type': '公司名称'}, {'text': '中研智创公司', 'type': '公司名称'}, {'text': '丰复久信', 'type': '公司名称简称'}, {'text': '中研智创', 'type': '公司名称简称'}]}, {'entities': [{'text': '上海市', 'type': '地址'}, {'text': '北京', 'type': '地址'}]}, {'entities': [{'text': '《计算机设备采购合同》', 'type': '项目名'}]}, {'entities': []}, {'entities': []}, {'entities': [{'text': '丰复久信公司', 'type': '公司名称'}, {'text': '中研智创公司', 'type': '公司名称'}]}, {'entities': []}, {'entities': [{'text': '《服务合同书》', 'type': '项目名'}]}, {'entities': []}, {'entities': []}, {'entities': [{'text': '北京丰复久信营销科技有限公司', 'type': '公司名称'}]}, {'entities': []}, {'entities': []}, {'entities': []}]
celery_worker-1 | [2025-07-14 14:20:31,288: INFO/ForkPoolWorker-4] Duplicate entity found: {'text': '丰复久信公司', 'type': '公司名称'}
celery_worker-1 | [2025-07-14 14:20:31,288: INFO/ForkPoolWorker-4] Duplicate entity found: {'text': '丰复久信公司', 'type': '公司名称'}
celery_worker-1 | [2025-07-14 14:20:31,288: INFO/ForkPoolWorker-4] Duplicate entity found: {'text': '中研智创公司', 'type': '公司名称'}
celery_worker-1 | [2025-07-14 14:20:31,288: INFO/ForkPoolWorker-4] Duplicate entity found: {'text': '北京丰复久信营销科技有限公司', 'type': '公司名称'}
celery_worker-1 | [2025-07-14 14:20:31,288: INFO/ForkPoolWorker-4] Merged 22 unique entities
celery_worker-1 | [2025-07-14 14:20:31,288: INFO/ForkPoolWorker-4] Unique entities: [{'text': '郭东军', 'type': '人名'}, {'text': '王欢子', 'type': '人名'}, {'text': '北京丰复久信营销科技有限公司', 'type': '公司名称'}, {'text': '丰复久信公司', 'type': '公司名称简称'}, {'text': '中研智创区块链技术有限公司', 'type': '公司名称'}, {'text': '中研智才公司', 'type': '公司名称简称'}, {'text': '北京市海淀区北小马厂6 号1 号楼华天大厦1306 室', 'type': '地址'}, {'text': '天津市津南区双港镇工业园区优谷产业园5 号楼-1505', 'type': '地址'}, {'text': '服务合同', 'type': '项目名'}, {'text': '(2022)京 03 民终 3852 号', 'type': '案号'}, {'text': '2020京0105 民初69754 号', 'type': '案号'}, {'text': '李圣艳', 'type': '人名'}, {'text': '闫向东', 'type': '人名'}, {'text': '李敏', 'type': '人名'}, {'text': '布兰登·斯密特', 'type': '英文人名'}, {'text': '中研智创公司', 'type': '公司名称'}, {'text': '丰复久信', 'type': '公司名称简称'}, {'text': '中研智创', 'type': '公司名称简称'}, {'text': '上海市', 'type': '地址'}, {'text': '北京', 'type': '地址'}, {'text': '《计算机设备采购合同》', 'type': '项目名'}, {'text': '《服务合同书》', 'type': '项目名'}]
celery_worker-1 | [2025-07-14 14:20:31,289: INFO/ForkPoolWorker-4] Calling ollama to generate entity linkage (attempt 1/3)
api-1 | INFO: 192.168.65.1:52168 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:61426 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:30702 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:48159 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:16860 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:21262 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:45564 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:32142 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:27769 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:21196 - "GET /api/v1/files/files HTTP/1.1" 200 OK
celery_worker-1 | [2025-07-14 14:21:21,436: INFO/ForkPoolWorker-4] Raw entity linkage response from LLM: {
celery_worker-1 | "entity_groups": [
celery_worker-1 | {
celery_worker-1 | "group_id": "group_1",
celery_worker-1 | "group_type": "公司名称",
celery_worker-1 | "entities": [
celery_worker-1 | {
celery_worker-1 | "text": "北京丰复久信营销科技有限公司",
celery_worker-1 | "type": "公司名称",
celery_worker-1 | "is_primary": true
celery_worker-1 | },
celery_worker-1 | {
celery_worker-1 | "text": "丰复久信公司",
celery_worker-1 | "type": "公司名称简称",
celery_worker-1 | "is_primary": false
celery_worker-1 | },
celery_worker-1 | {
celery_worker-1 | "text": "丰复久信",
celery_worker-1 | "type": "公司名称简称",
celery_worker-1 | "is_primary": false
celery_worker-1 | }
celery_worker-1 | ]
celery_worker-1 | },
celery_worker-1 | {
celery_worker-1 | "group_id": "group_2",
celery_worker-1 | "group_type": "公司名称",
celery_worker-1 | "entities": [
celery_worker-1 | {
celery_worker-1 | "text": "中研智创区块链技术有限公司",
celery_worker-1 | "type": "公司名称",
celery_worker-1 | "is_primary": true
celery_worker-1 | },
celery_worker-1 | {
celery_worker-1 | "text": "中研智创公司",
celery_worker-1 | "type": "公司名称简称",
celery_worker-1 | "is_primary": false
celery_worker-1 | },
celery_worker-1 | {
celery_worker-1 | "text": "中研智创",
celery_worker-1 | "type": "公司名称简称",
celery_worker-1 | "is_primary": false
celery_worker-1 | }
celery_worker-1 | ]
celery_worker-1 | }
celery_worker-1 | ]
celery_worker-1 | }
celery_worker-1 | [2025-07-14 14:21:21,437: INFO/ForkPoolWorker-4] Parsed entity linkage: {'entity_groups': [{'group_id': 'group_1', 'group_type': '公司名称', 'entities': [{'text': '北京丰复久信营销科技有限公司', 'type': '公司名称', 'is_primary': True}, {'text': '丰复久信公司', 'type': '公司名称简称', 'is_primary': False}, {'text': '丰复久信', 'type': '公司名称简称', 'is_primary': False}]}, {'group_id': 'group_2', 'group_type': '公司名称', 'entities': [{'text': '中研智创区块链技术有限公司', 'type': '公司名称', 'is_primary': True}, {'text': '中研智创公司', 'type': '公司名称简称', 'is_primary': False}, {'text': '中研智创', 'type': '公司名称简称', 'is_primary': False}]}]}
celery_worker-1 | [2025-07-14 14:21:21,445: INFO/ForkPoolWorker-4] Successfully created entity linkage with 2 groups
celery_worker-1 | [2025-07-14 14:21:21,445: INFO/ForkPoolWorker-4] Entity linkage: {'entity_groups': [{'group_id': 'group_1', 'group_type': '公司名称', 'entities': [{'text': '北京丰复久信营销科技有限公司', 'type': '公司名称', 'is_primary': True}, {'text': '丰复久信公司', 'type': '公司名称简称', 'is_primary': False}, {'text': '丰复久信', 'type': '公司名称简称', 'is_primary': False}]}, {'group_id': 'group_2', 'group_type': '公司名称', 'entities': [{'text': '中研智创区块链技术有限公司', 'type': '公司名称', 'is_primary': True}, {'text': '中研智创公司', 'type': '公司名称简称', 'is_primary': False}, {'text': '中研智创', 'type': '公司名称简称', 'is_primary': False}]}]}
celery_worker-1 | [2025-07-14 14:21:21,446: INFO/ForkPoolWorker-4] Generated masked mapping for 22 entities
celery_worker-1 | [2025-07-14 14:21:21,446: INFO/ForkPoolWorker-4] Combined mapping: {'郭东军': '某', '王欢子': '某甲', '北京丰复久信营销科技有限公司': '某公司', '丰复久信公司': '某公司甲', '中研智创区块链技术有限公司': '某公司乙', '中研智才公司': '某公司丙', '北京市海淀区北小马厂6 号1 号楼华天大厦1306 室': '某乙', '天津市津南区双港镇工业园区优谷产业园5 号楼-1505': '某丙', '服务合同': '某丁', '(2022)京 03 民终 3852 号': '某戊', '2020京0105 民初69754 号': '某己', '李圣艳': '某庚', '闫向东': '某辛', '李敏': '某壬', '布兰登·斯密特': '某癸', '中研智创公司': '某公司丁', '丰复久信': '某公司戊', '中研智创': '某公司己', '上海市': '某11', '北京': '某12', '《计算机设备采购合同》': '某13', '《服务合同书》': '某14'}
celery_worker-1 | [2025-07-14 14:21:21,446: INFO/ForkPoolWorker-4] Linked entity '北京丰复久信营销科技有限公司' to '北京丰复久信营销科技有限公司' with masked name '某公司'
celery_worker-1 | [2025-07-14 14:21:21,446: INFO/ForkPoolWorker-4] Linked entity '丰复久信公司' to '北京丰复久信营销科技有限公司' with masked name '某公司'
celery_worker-1 | [2025-07-14 14:21:21,446: INFO/ForkPoolWorker-4] Linked entity '丰复久信' to '北京丰复久信营销科技有限公司' with masked name '某公司'
celery_worker-1 | [2025-07-14 14:21:21,446: INFO/ForkPoolWorker-4] Linked entity '中研智创区块链技术有限公司' to '中研智创区块链技术有限公司' with masked name '某公司乙'
celery_worker-1 | [2025-07-14 14:21:21,446: INFO/ForkPoolWorker-4] Linked entity '中研智创公司' to '中研智创区块链技术有限公司' with masked name '某公司乙'
celery_worker-1 | [2025-07-14 14:21:21,446: INFO/ForkPoolWorker-4] Linked entity '中研智创' to '中研智创区块链技术有限公司' with masked name '某公司乙'
celery_worker-1 | [2025-07-14 14:21:21,446: INFO/ForkPoolWorker-4] Final mapping: {'郭东军': '某', '王欢子': '某甲', '北京丰复久信营销科技有限公司': '某公司', '丰复久信公司': '某公司', '中研智创区块链技术有限公司': '某公司乙', '中研智才公司': '某公司丙', '北京市海淀区北小马厂6 号1 号楼华天大厦1306 室': '某乙', '天津市津南区双港镇工业园区优谷产业园5 号楼-1505': '某丙', '服务合同': '某丁', '(2022)京 03 民终 3852 号': '某戊', '2020京0105 民初69754 号': '某己', '李圣艳': '某庚', '闫向东': '某辛', '李敏': '某壬', '布兰登·斯密特': '某癸', '中研智创公司': '某公司乙', '丰复久信': '某公司', '中研智创': '某公司乙', '上海市': '某11', '北京': '某12', '《计算机设备采购合同》': '某13', '《服务合同书》': '某14'}
celery_worker-1 | [2025-07-14 14:21:21,446: INFO/ForkPoolWorker-4] Successfully masked content
celery_worker-1 | [2025-07-14 14:21:21,449: INFO/ForkPoolWorker-4] Successfully saved masked content to /app/storage/processed/47522ea9-c259-4304-bfe4-1d3ed6902ede.md
celery_worker-1 | [2025-07-14 14:21:21,470: INFO/ForkPoolWorker-4] Task app.services.file_service.process_file[5cfbca4c-0f6f-4c71-a66b-b22ee2d28139] succeeded in 311.847165101s: None
api-1 | INFO: 192.168.65.1:33432 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:40073 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:29550 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:61350 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:61755 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:63726 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:43446 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:45624 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:25256 - "GET /api/v1/files/files HTTP/1.1" 200 OK
api-1 | INFO: 192.168.65.1:43464 - "GET /api/v1/files/files HTTP/1.1" 200 OK

View File

@ -28,5 +28,5 @@ requests==2.28.1
python-docx>=0.8.11
PyPDF2>=3.0.0
pandas>=2.0.0
magic-pdf[full]
# magic-pdf[full]
jsonschema>=4.20.0

View File

@ -0,0 +1,62 @@
import pytest
from app.core.document_handlers.ner_processor import NerProcessor
def test_generate_masked_mapping():
processor = NerProcessor()
unique_entities = [
{'text': '李雷', 'type': '人名'},
{'text': '李明', 'type': '人名'},
{'text': '王强', 'type': '人名'},
{'text': 'Acme Manufacturing Inc.', 'type': '英文公司名', 'industry': 'manufacturing'},
{'text': 'Google LLC', 'type': '英文公司名'},
{'text': 'A公司', 'type': '公司名称'},
{'text': 'B公司', 'type': '公司名称'},
{'text': 'John Smith', 'type': '英文人名'},
{'text': 'Elizabeth Windsor', 'type': '英文人名'},
{'text': '华梦龙光伏项目', 'type': '项目名'},
{'text': '案号12345', 'type': '案号'},
{'text': '310101198802080000', 'type': '身份证号'},
{'text': '9133021276453538XT', 'type': '社会信用代码'},
]
linkage = {
'entity_groups': [
{
'group_id': 'g1',
'group_type': '公司名称',
'entities': [
{'text': 'A公司', 'type': '公司名称', 'is_primary': True},
{'text': 'B公司', 'type': '公司名称', 'is_primary': False},
]
},
{
'group_id': 'g2',
'group_type': '人名',
'entities': [
{'text': '李雷', 'type': '人名', 'is_primary': True},
{'text': '李明', 'type': '人名', 'is_primary': False},
]
}
]
}
mapping = processor._generate_masked_mapping(unique_entities, linkage)
# 人名
assert mapping['李雷'].startswith('李某')
assert mapping['李明'].startswith('李某')
assert mapping['王强'].startswith('王某')
# 英文公司名
assert mapping['Acme Manufacturing Inc.'] == 'MANUFACTURING'
assert mapping['Google LLC'] == 'COMPANY'
# 公司名同组
assert mapping['A公司'] == mapping['B公司']
assert mapping['A公司'].endswith('公司')
# 英文人名
assert mapping['John Smith'] == 'J*** S***'
assert mapping['Elizabeth Windsor'] == 'E*** W***'
# 项目名
assert mapping['华梦龙光伏项目'].endswith('项目')
# 案号
assert mapping['案号12345'] == '***'
# 身份证号
assert mapping['310101198802080000'] == 'XXXXXX'
# 社会信用代码
assert mapping['9133021276453538XT'] == 'XXXXXXXX'

View File

@ -7,7 +7,7 @@ services:
dockerfile: Dockerfile
platform: linux/arm64
ports:
- "8000:8000"
- "8001:8000"
volumes:
- ./storage/uploads:/app/storage/uploads
- ./storage/processed:/app/storage/processed