Refactor PdfDocumentProcessor to enhance PDF content processing

- Updated read_content method to return raw bytes instead of extracted text.
- Modified process_content method to handle bytes and generate multiple output files including markdown, JSON, and processed PDFs.
- Implemented directory setup for image storage and output management.
- Integrated PymuDocDataset for PDF classification and processing based on OCR capabilities.
This commit is contained in:
oliviamn 2025-05-05 19:15:03 +08:00
parent 6acf3e5423
commit edca9a87a0
1 changed files with 58 additions and 9 deletions

View File

@ -1,20 +1,69 @@
import os
import PyPDF2
from models.document_processor import DocumentProcessor
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.config.enums import SupportedPdfParseMethod
class PdfDocumentProcessor(DocumentProcessor):
def __init__(self, input_path: str, output_path: str):
self.input_path = input_path
self.output_path = output_path
self.output_dir = os.path.dirname(output_path)
self.name_without_suff = os.path.splitext(os.path.basename(input_path))[0]
# Setup output directories
self.local_image_dir = os.path.join(self.output_dir, "images")
self.image_dir = os.path.basename(self.local_image_dir)
os.makedirs(self.local_image_dir, exist_ok=True)
def read_content(self) -> str:
def read_content(self) -> bytes:
with open(self.input_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
return ' '.join([page.extract_text() for page in pdf_reader.pages])
return file.read()
def process_content(self, content: str) -> str:
# Implementation for processing PDF content
return content
def process_content(self, content: bytes) -> dict:
# Initialize writers
image_writer = FileBasedDataWriter(self.local_image_dir)
md_writer = FileBasedDataWriter(self.output_dir)
def save_content(self, content: str) -> None:
# Implementation for saving as PDF
pass
# Create Dataset Instance
ds = PymuDocDataset(content)
# Process based on PDF type
if ds.classify() == SupportedPdfParseMethod.OCR:
infer_result = ds.apply(doc_analyze, ocr=True)
pipe_result = infer_result.pipe_ocr_mode(image_writer)
else:
infer_result = ds.apply(doc_analyze, ocr=False)
pipe_result = infer_result.pipe_txt_mode(image_writer)
# Generate all outputs
infer_result.draw_model(os.path.join(self.output_dir, f"{self.name_without_suff}_model.pdf"))
model_inference_result = infer_result.get_infer_res()
pipe_result.draw_layout(os.path.join(self.output_dir, f"{self.name_without_suff}_layout.pdf"))
pipe_result.draw_span(os.path.join(self.output_dir, f"{self.name_without_suff}_spans.pdf"))
md_content = pipe_result.get_markdown(self.image_dir)
pipe_result.dump_md(md_writer, f"{self.name_without_suff}.md", self.image_dir)
content_list = pipe_result.get_content_list(self.image_dir)
pipe_result.dump_content_list(md_writer, f"{self.name_without_suff}_content_list.json", self.image_dir)
middle_json = pipe_result.get_middle_json()
pipe_result.dump_middle_json(md_writer, f'{self.name_without_suff}_middle.json')
return md_content
return {
'markdown': md_content,
'content_list': content_list,
'middle_json': middle_json,
'model_inference': model_inference_result
}
def save_content(self, content: dict) -> None:
# Content is already saved during processing
with open(self.output_path, 'w', encoding='utf-8') as file:
file.write(content)